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ABSTRACT Let s = o + it. For any complex a, all but
O(1/log log T) of the roots of {(s) = ain T < t < 2T liein
|e — /5] < (log log T)*/log T. The results extend easily to
other functions satisfying a functional equation such as
the Dirichlet L-functions, the Lerch functions, etc.

In his recent book (ref. 1, pp. 164 and 197) Edwards
states that the clustering of the zeros of {(s) near ¢ =
1/,, first proved by Bohr and Landau (2), is the best ex-
isting evidence for the Riemann Hypothesis. Titchmarsh
(ref. 3, p. 197) also emphasizes with italics the clustering
phenomenon of the zeros of ¢(s). It will be shown here
that for any complex a the roots of {(s) = a cluster at ¢
= 1/, and so, in this sense, the case a = 0is not special.
However, from ref. 3, Chap. 11, it is clear that the clus-
tering for the case a = 0 is more pronounced than for a
#~ 0, since the roots of {(s) = a,a # 0,in ¢ > 1/, + §,
0 <t < T, must exceed K(a,8)T, K(a,8) > 0, and so the
results on N(os,T), such as those of Ingham (ref. 3, p.
203) and Selberg (ref. 3, p. 204), are peculiar to a = 0.

The clustering of the roots of ¢(s) aat o 1/,
was demonstrated under the Riemann Hypothesis in

1913 by Landau (4).

THEOREM. Let T'* < U < T. Let a be any fized com-
plex number. Let NV (a; T, U) be the number of roots of

£(s) = ain

I >% + (loglog T)¥log T, T<t< T + U;
let N® (a; T, U) be those in

4 <% — (loglog T)*/log T, T<t< T + U;
andlet N® (a; T, U) be those in

3~ (oglog T)/log T < « < &
+ (log log T)%/log T, T < t < T + U.
Then for large T

N® (a;T,U) = g log T + O(U log T/log log T)
w

N® (a; T,U)+ N9 (a; T, U) = O(U log T/log log T).

1322

LEMMA 1.

T+U 1 .
fT f(é +“)

Proof: By the approximate functional equation
1 .
:(é + zt) 2

n< (¢/22)10
By the familiar process of treating the diagonal and
nondiagonal sums separately,

L

and the lemma is proved. [Far sharper results have been

proved (ref. 3, Chap. 7).]
It will be assumed in what follows that a = 1. The
minor modification for the case a = 1 will be indicated

below.

LEMMA 2. Denote the roots of ¢(s) = aby o, + t,. Let
b be real. Then

»T+4+ U
2, (sa+b) = fT log |t (=b + 4t)

T<ta<T+U
0e>—b

"dt = O(U log T).

n...x/,—itl + O(t_l/‘)-

<2

n~"*"%2dt = O(U log T)

n<(¢/2x) 12

2r

— aldt — Ulog |1 — a| + O(log T).

Proof: A familiar lemma of Littlewood (ref. 3, p.
187) is applied to G(s) = (¢(s) — a)/(1 — a). If cis suffi-
ciently large, it follows from integrating log G(s) around
the boundary of the half-strip, s = ¢, T<t< T + U;
e>c,t=T;e>ct=T + U, and taking the imagi-
nary part of the result that

T+U
f log |G(c + it)|dt = 0Q1).
T
Use is made of log (1 + w) = O(w) for |w| < !/,. Using
Jensen’s theorem in a familiar way (ref. 3, p. 180) in
circles with centers at (¢,T') and (¢,T + U) gives

f " arg G(o + iT)de = O(log T)
-b

and similarly for ¢t = T 4 U. This proves the lemma.
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LEMMA 3.

> <a., - %) = O(U loglog T)
T<te<T+U

ga>1/2

27

Proof: Use Lemma 2 withb = —!/,. Note that

T+U 1 1
f log i'(’ +it) —adt < U
T 2 2

1 1 T+U 1 .
(B4

Application of Lemma 1 gives the result.

2
).

LEMMA 4.
N (a; T, U) = O(U log T/log log T).

Proof: From Lemma 3 follows
2xN® (a; T, U)(log log T)*/log T = O(U log log T)
and this proves the lemma.

LEMMA 5. Letb > 2. Then for large T
2r X (aa+b)=<l+b>|:Ulog—7-1-—U

2 27

T<ta<T+U

T U
+ T+ U)log T F

] — Ulog|l — a| + O(log T)

Proof: From the functional equation {(s) =
x(8)¢(1 — s), where

x(s) = 2*x—1* sin ws/2T'(1 — s).

By Stirling’s formula, x(s) = exp ((wxi/4) — 1 + £(s))
for |arg s — x/2| < /4 where

f(s) = (% - s)log (—12_—‘?)’ + s+ 0(1/s).

T
Hence,

log [¢(s) — a| = log |x(s)]

+bgm1‘”“*“@®«$—s>

and

log |x(s)| = (% - a)log |t/(2x)| + 0@1/t).

Since x(s) for ¢ < —2 exceeds ¢2 in size, there can be no
zeros of {(s) — a = 0in ¢ < —2 for large |t|. By Lemma
2 the above formulae yield

2= 3, (aa+b)=<%+b)

T<ta<T+U

T+U t
Xf log —dt — UIogIl -al + O(log T)
T 27

and this proves the lemma.
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LEMMA 6.
N® (a; T,U) + N® (a; T, U) + N® (a; T, U)
U T T+ U

U T+ U
=——0g-——-—+ +

O(log T).
2r 827 27 2n log —— + Ollog T)

Proof: In Lemma 6 subtract the case b + 1 from b
and note there are no zeros in ¢ < —2 for large 7.

This result was proved by Landau (4). In particular,
from Lemma 6 follows

N® (@ T, U) + N© (a; T, U) + NO (a; T, U)
Vi r+0w 1
27

The use of Littlewood’s lemma in the proof that follows
is very similar to the use made in proving Theorem 2 of

ref. 5.

Proof of Theorem: From the definition of N
(a; T, U) and Lemma 3 follows
2r X (6o 4+ b) <O loglog T)

T<ta<T+U

+%@+9ww+mwwnm1

+ 21r(b + él- — (log log T)*/log T>N<2> (@ T, U)

Using Lemma 6 and Lemma 6, this yields
0<O0WUloglogT) — 2x(loglog T)*N® (a; T, U)/log T
or

N® (a; T, U) = O(U log T/log log T).

Combining this with Lemma 4 and [1] proves the theo-
rem for a # 1.

For a = 1, let G(s) = 2*(¢(s) — 1) and make the
minor changes necessary.

By Rouché’s theorem and Stirling’s formula for x(s)
it follows easily that there is alsoa root of {(s) —a = 0
in the neighborhood of s = —2n for large n, and with a
finite number of possible exceptions, these are the only
roots with ¢ < —2.

A more general result than the theorem which has the
same proof is the following:

Lets>0besmalland T <K UL T.ForT<t< T +
U, let N g (a, 8; T, U) be thenumber of roots of {(s) = ain
> 1+ 68 let Ny (a, 5; T, U) be the number in o < '/,
— &; and let Ny (a, 8; T, U) be the number in /> — &
< o< Yy+4+ 6. Then

Ng (a,6, T,U) = 2% log T + O(U(log log T)/6)

Naoy+ N (a,8; T, U) = O(U(log log T)/3)
The theorem is the special case § = (log log T)2/log T'.



1324 Mathematics: Levinson

P. T. Bateman has informed me that A. Selberg has
written to him that he can sharpen the above results
since he can prove that for a # 0

T 1
f log {(5 + it) —a
0

This replaces Lemma 3 and is used in Lemma 2 with b =
—1/, to give the sharp result.

dt ~ %a’_l/ *T'(log log T)".
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